BLOCKCHAIN SYSTEMS & PRIVACY

Aggelos Kiayias
University of Edinburgh & IOHK

project PANORAMIX
ABOUT ME

- Chair in Cyber Security & Privacy at U. of Edinburgh.
- Coordinator of H2020 Panoramix Consortium.
- Director of the Blockchain Technology Laboratory @ UEDIN.
 - conducting research on blockchain systems.
- Chief Scientist of IOHK, a blockchain tech R&D company.
 - we are developing scalable blockchain systems based on state of the art security engineering principles.
 - https://iohk.io
TALK PLAN

- GDPR and motivation.
- Understanding Distributed Ledger Technology: implementing money.
- Privacy-Preserving Data Processing.
- Secure Multiparty Computation.
- Putting it all together.
TALK PLAN

- GDPR and motivation.
- Understanding Distributed Ledger Technology: implementing money.
- Privacy-Preserving Data Processing.
- Secure Multiparty Computation.
- Putting it all together.
GDPR & RIGHTS OF DATA SUBJECTS

- Right of access
- Right of rectification
- Right to basic information
- Right to erasure
- Right to object/restrict processing
- Right of data portability
- ...
Article 15. GDPR:

- The data subject has the **right of access** to the following information:
 a) the **purposes** of the processing
 b) the categories of personal data concerned
 c) the **recipients** … the personal data have been … disclosed

 ...

h) the existence of **automated decision-making** … meaningful information about the **logic** involved
RIGHT TO ERASURE

- Article 17. GDPR:
 - data subject shall have the right to obtain … the erasure of personal data.
MOTIVATION
Many recent privacy related discussions about blockchain systems deal with the privacy implications of using a particular blockchain application (namely cryptocurrencies such as bitcoin).
MOTIVATION

- Many recent privacy related discussions about blockchain systems deal with the privacy implications of using a particular blockchain application (namely cryptocurrencies such as bitcoin).

- Our main goal: using DLT and additional cryptographic techniques in a constructive fashion to rethink & improve GDPR compliance.
TALK PLAN

- GDPR and motivation.
- Understanding Distributed Ledger Technology: implementing money.
- Privacy-Preserving Data Processing.
- Secure Multiparty Computation.
- Putting it all together.
TALK PLAN

- GDPR and motivation.
- Understanding Distributed Ledger Technology: implementing money.
- Privacy-Preserving Data Processing.
- Secure Multiparty Computation.
- Putting it all together.
Understanding DLT
Understanding DLT

- DLT has blockchain protocols as a primary reference point.
Understanding DLT

- DLT has blockchain protocols as a primary reference point.

- The blockchain is a distributed database that satisfies a unique set of safety and liveness properties.
Understanding DLT

• DLT has blockchain protocols as a primary reference point.

• The blockchain is a distributed database that satisfies a unique set of safety and liveness properties.

• To understand it, we can focus to its first (and so far most successful) application.
Case study: Money

- What is money?
Properties of Money

- a medium of exchange
- a unit of account
- a store of value
Properties of Money

- a medium of exchange
- a unit of account
- a store of value

can be used as medium for the exchange of goods - no barter
Properties of Money

- a medium of exchange
- a unit of account
- a store of value

can be used as medium for the exchange of goods - no barter

can be used for pricing of all goods and services, for accounting purposes and debt recording.
Properties of Money

- a medium of exchange
- a unit of account
- a store of value

can be used as medium for the exchange of goods - no barter

can be used for pricing of all goods and services, for accounting purposes and debt recording.

Storing and retrieving it at a point in the future maintains its value.
Creating Money

Money 1.0: using a trusted object
Analysis of Money 1.0

- a medium of exchange
- a unit of account
- a store of value
Analysis of Money 1.0

- a medium of exchange
- a unit of account
- a store of value

mediocre
[ok for face to face transactions]
Analysis of Money 1.0

- a medium of exchange
- a unit of account
- a store of value

mediocre
[ok for face to face transactions]

mediocre fungible, but not divisible well. typically forgeable.
Analysis of Money 1.0

- a medium of exchange
- a unit of account
- a store of value

mediocre
[ok for face to face transactions]

mediocre fungible, but not divisible well. Typically forgeable.

bad. Some objects may deteriorate, others may have unknown hidden quantities.
Creating Money

Money 2.0: using a trusted entity

Trusted entity issues “IOU”s
Analysis of Money 2.0

- a medium of exchange
- a unit of account
- a store of value
Analysis of Money 2.0

• a medium of exchange

• a unit of account

• a store of value

good
[for transactions within the domain of the trusted entity]
Analysis of Money 2.0

- a medium of exchange
- a unit of account
- a store of value

good
[for transactions within the domain of the trusted entity]

great!
fungible & divisible.
Analysis of Money 2.0

- a medium of exchange
- a unit of account
- a store of value

good
[for transactions within the domain of the trusted entity]

great!
fungible & divisible.

mediocre
[tied to the availability & reputation of the issuing entity]
Creating Money

Money 3.0: Bitcoin

Enter Blockchain & distributed Ledgers
The never-ending book parable
A “book” of transactions

Alice sends x to Bob
A “book” of transactions

- Each new page requires some effort to produce.
A “book” of transactions

- Each new page requires some effort to produce.
- Anyone can be a scribe and produce a page.
A “book” of transactions

- Each new page requires some effort to produce.
- Anyone can be a scribe and produce a page.
- New pages are produced indefinitely as long as scribes are interested in doing so.
Importance of Consensus

• If multiple conflicting books exist, which is the “right one”?

Choosing the correct book

The **current book** to work on & refer to is the book with the most pages. If multiple exist, just pick one at random.
Assembling the current book

- each page refers only to the previous page
- current is assembled by stringing together the longest sequence of pages.
Assembling the current book

- each page refers only to the previous page
- current is assembled by stringing together the longest sequence of pages.

Orphan pages
Rules of extending the book

The first scribe that discovers a page announces it to everyone else
Effort is needed to produce a page equivalent to: each page needs a special combination from a set of dice to be rolled.
Effort is needed to produce a page equivalent to: each page needs a special combination from a set of dice to be rolled.
Effort is needed to produce a page
equivalent to: each page needs a special combination from a set of dice to be rolled.
Effort is needed to produce a page
equivalent to: each page needs a special combination from a set of dice to be rolled.
Effort is needed to produce a page equivalent to: each page needs a special combination from a set of dice to be rolled.
Effort is needed to produce a page equivalent to: each page needs a special combination from a set of dice to be rolled.
Effort is needed to produce a page
equivalent to: each page needs a special combination from a set of dice to be rolled.
Effort is needed to produce a page equivalent to: each page needs a special combination from a set of dice to be rolled.

The probabilistic nature of the process is paramount to its security.
The benefits of randomness

Imagine two scribes working together
The benefits of randomness

Imagine two scribes working together

Unlikely to continuously be lucky together

eventually one book will be longer and be adopted by both of them
The benefits of randomness

Imagine two scribes working together

Unlikely to continuously be lucky together

eventually one book will be longer and be adopted by both of them

Symmetry Breaking
Being a scribe
Being a scribe

• Anyone can be a scribe for the book.
Being a scribe

- Anyone can be a scribe for the book.
- As long as you have a set of dice.
Being a scribe

- Anyone can be a scribe for the book.
- As long as you have a set of dice.
- The more dice one has, the higher the likelihood to produce the winning combination to make a page.
Using the book - Money 3.0

Buyer ———— verify purchase details ———— Seller

Buyer ———— address for payment ———— Seller
Using the book - Money 3.0

Buyer ➔ verify purchase details ➔ Seller

Buyer ➔ address for payment ➔ Seller

payment

B pays S

x
Using the book - Money 3.0
Using the book - Money 3.0

Buyer ——> verify purchase details ——> Seller

Buyer ——> address for payment ——> Seller

Buyer pays Seller

Payment: B pays $
Using the book - Money 3.0
Using the book - Money 3.0

Buyer

verify purchase details

address for payment

verify payment is “confirmed”

Seller

payment

B pays S

put item for delivery
Using the book - Money 3.0

Buyer

verify purchase details

address for payment

Seller

verify payment is "confirmed"

put item for delivery

payment

B pays S

x

Bicycle

Money
<table>
<thead>
<tr>
<th>Parable & Reality</th>
</tr>
</thead>
<tbody>
<tr>
<td>book</td>
</tr>
<tr>
<td>scribes</td>
</tr>
<tr>
<td>producing a page</td>
</tr>
<tr>
<td>rolling a set of dice</td>
</tr>
</tbody>
</table>
Analysis of Money 3.0

• a medium of exchange
• a unit of account
• a store of value
Analysis of Money 3.0

- a medium of exchange
- a unit of account
- a store of value

improving
[assuming internet connectivity / adoption]
Analysis of Money 3.0

- a medium of exchange
- a unit of account
- a store of value

improving
[assuming internet connectivity / adoption]
great!
fungible & divisible.
Analysis of Money 3.0

• a medium of exchange

• a unit of account

• a store of value

improving
[assuming internet connectivity / adoption]

great!
fungible & divisible.

good
[no trusted parties -
no natural deterioration]
From Money to Smart Contracts
From Money to Smart Contracts

• Since we have created the book, why stop at recording monetary transactions?
From Money to Smart Contracts

• Since we have created the book, why stop at recording monetary transactions?

• We can encode in the book’s pages arbitrary relations between persons.
From Money to Smart Contracts

• Since we have created the book, why stop at recording monetary transactions?

• We can encode in the book’s pages arbitrary relations between persons.

• Furthermore, scribes, can perform tasks such as verifying that stakeholders comply to contractual obligations … and take action if they do not.
Smart Contract
Smart Contract Operation
Smart Contract Operation

• A smart contract is a piece of code written in a formal language that records all terms for a certain engagement between a set of persons, “stakeholders.”
Smart Contract Operation

• A smart contract is a **piece of code** written in a formal language that records all terms for a certain engagement between a set of persons, “stakeholders.”

• Stakeholders are identified by their **accounts**.
Smart Contract Operation

• A smart contract is a **piece of code** written in a formal language that records all terms for a certain engagement between a set of persons, “stakeholders.”

• Stakeholders are identified by their **accounts**.

• The smart contract has a **public state**.
Smart Contract Operation

• A smart contract is a **piece of code** written in a formal language that records all terms for a certain engagement between a set of persons, “stakeholders.”

• Stakeholders are identified by their **accounts**.

• The smart contract has a **public state**.

• The smart contract **self executes** each time a certain trigger condition is fulfilled.
TALK PLAN

- GDPR and motivation.
- Understanding Distributed Ledger Technology: implementing money.
- Privacy-Preserving Data Processing.
- Secure Multiparty Computation.
- Putting it all together.
TALK PLAN

- GDPR and motivation.
- Understanding Distributed Ledger Technology: implementing money.
- Privacy-Preserving Data Processing.
- Secure Multiparty Computation.
- Putting it all together.
Application to Privacy
Preserving Data Processing

Procedure: Data Subject produces data
Application to Privacy
Preserving Data Processing

Procedure: Data Subject produces data
data controller creates smart contract to maintain and manage data
Application to Privacy
Preserving Data Processing

Procedure: Data Subject produces data
data controller creates smart contract to maintain and manage data
Application to Privacy Preserving Data Processing

Procedure: Data Subject produces data

- data controller creates smart contract to maintain and manage data
- deposits request for processing

Data processor
Application to Privacy
Preserving Data Processing

Procedure: Data Subject produces data

- data controller creates smart contract to maintain and manage data
- deposits request for processing

Data processing engine

Data processor
Application to Privacy
Preserving Data Processing

Procedure: Data Subject produces data

Data controller creates smart contract to maintain and manage data

Data processing engine

Data processor

deposits request for processing
Application to Privacy
Preserving Data Processing

Procedure: Data Subject produces data

data controller creates smart contract to maintain and manage data

...
Application to Privacy Preserving Data Processing

Procedure: Data Subject produces data

Data controller creates smart contract to maintain and manage data

...
Application to Privacy Preserving Data Processing

Procedure: Data Subject produces data

- data controller creates smart contract to maintain and manage data

- deposits request for processing

- receives output

- GDPR compliance

- processing

- data processing engine

- auditor

- Data processor
DLT FOR PERSONAL DATA

- Personal data **managed by smart contract**.
 - Actions that are permitted include updating and effective erasure.

- Requests for processing are also smart contract based.
 - Actions that are permitted include responding to the request.

- Auditing (right of access) can be achieved by parsing the ledger.
A CHALLENGE

- How to **encode** the personal data?
- How to implement the processor so to comply with **minimum information disclosure**.
TALK PLAN

- GDPR and motivation.
- Understanding Distributed Ledger Technology: implementing money.
- Privacy-Preserving Data Processing.
- Secure Multiparty Computation.
- Putting it all together.
TALK PLAN

- GDPR and motivation.
- Understanding Distributed Ledger Technology: implementing money.
- Privacy-Preserving Data Processing.
- Secure Multiparty Computation.
- Putting it all together.
(Secure) Multiparty Computation (MPC)

- Parameterized by function $f(.)$
- A set of n parties contribute inputs x_1, x_2, \ldots, x_n
- At the end of the protocol they compute $f(x_1, x_2, \ldots, x_n)$
MPC CONSTRUCTION IDEA, I

- Consider three roles:
 - Input-providers, Processors, Output-receivers
 - Input providers secret-share their input to processors

- Secret-sharing:
 Additive Secret Sharing

\[s_1 + s_2 + \ldots + s_m = x \mod P \]
Represent function f as Boolean circuit, e.g., XOR, AND, NOT and arithmetize it!

(any function can be implemented using these gates)
Suppose m parties hold shares of two inputs to an XOR gate.

\[
[a], [b] = \langle a_1, \ldots, a_m \rangle, \langle b_1, \ldots, b_m \rangle
\]

How do they calculate shares of the output of the XOR gate?

\[
[a] + [b] \mod 2
\]
Suppose \(m \) parties hold shares of two inputs to a NOT gate.

\[
[a] = \langle a_1, \ldots, a_m \rangle
\]

How do they calculate shares of the output of the NOT gate?

\[
[a] = \langle 1 + a_1 \mod 2, a_2, \ldots, a_m \rangle
\]
Suppose \(m \) parties hold shares of two inputs to an AND gate.

\[
[a], [b] = \langle a_1, \ldots, a_m \rangle, \langle b_1, \ldots, b_m \rangle
\]

How do they calculate shares of the output of the AND gate?

\[
[a] \cdot [b] = \langle a_1 b_1 \mod 2, \ldots, a_m b_m \mod 2 \rangle
\]

but we want:

\[
s_1 + \ldots + s_m = \left(\sum_{i=1}^{m} a_i \right) \left(\sum_{i=1}^{m} b_i \right)
\]
MPC CONSTRUCTION IDEA, VI

- Use interaction between parties.
 - Tool: additive homomorphic encryption:
 \[E(x) \cdot E(y) = E(x + y \mod 2) \]
 - it enables:
 \[a, b, E(x) \Rightarrow E(ax + b) \]
 - e.g. Goldwasser-Micali Cryptosystem (Turing awardees 2012).
 - public-key: \(N \) Blum - Integer \(N = pq, p \equiv q \equiv 3 \mod 4 \)
 - encryption: \((-1)^m y \mod N \) \(y \in QR(N) \)
 - decryption: Test for quadratic residuosity
 \[\psi \frac{p-1}{2} \mod p \]
 \[\psi \frac{q-1}{2} \mod q = 1 \]
MPC CONSTRUCTION IDEA, VII

\[
(\sum_{i=1}^{2} a_i)(\sum_{i=1}^{2} b_i) = a_1 b_1 + a_2 b_2 + a_1 b_2 + a_2 b_1
\]

- \(m=2\)

\[\begin{align*}
\mathcal{E}_1(a_1) & \quad \mathcal{E}_2(a_2) \\
\mathcal{E}_1(a_1 b_2 + r) & \quad \mathcal{E}_2(a_2 b_1 + s) \\
\mathcal{E}_1, \mathcal{E}_2 \quad \text{additive homomorphic}
\end{align*}\]
MPC CONSTRUCTION IDEA, VII

\((\sum_{i=1}^{2} a_i)(\sum_{i=1}^{2} b_i) = a_1b_1 + a_2b_2 + a_1b_2 + a_2b_1 \)

\(= (a_1b_1 + a_1b_2 + r - s) + (a_2b_2 + a_2b_1 + s - r) \)

\(m=2 \)

\(\mathcal{E}_1(a_1) \)

\(\mathcal{E}_1(a_1b_2 + r) \)

\(\mathcal{E}_2(a_2) \)

\(\mathcal{E}_2(a_2b_1 + s) \)

\(\mathcal{E}_1, \mathcal{E}_2 \)

additive homomorphic
There are various cryptographic techniques that achieve simulation of multiplication gates.

At the end, the processors posses shares of the output wires of the circuit.

Such shares can be encrypted with the output-receivers’ key and the result of the computation can be recovered.
TALK PLAN

- GDPR and motivation.
- Understanding Distributed Ledger Technology: implementing money.
- Privacy-Preserving Data Processing.
- Secure Multiparty Computation.
- Putting it all together.
TALK PLAN

- GDPR and motivation.
- Understanding Distributed Ledger Technology: implementing money.
- Privacy-Preserving Data Processing.
- Secure Multiparty Computation.
- Putting it all together.
PUTTING IT ALL TOGETHER, (1)

- Data gatekeepers, public entities which:
 - will provide a **public-key**.
 - sensitive data will be **locked** under their public-keys jointly.
 - able to **respond** to processing requests by data processors.
 - their existence will be **incentivized** by data processors.
PUTTING IT ALL TOGETHER, (2)

Procedure: Data Subject selects data gatekeepers & encodes data into the smart contract.

\[
\mathcal{E}_1(a_1), \ldots, \mathcal{E}_m(a_m)
\]

\[
\sum_{i=1}^{m} a_i = x
\]
PUTTING IT ALL TOGETHER, (2)

Procedure: Data Subject selects data gatekeepers & encodes data into the smart contract.

\[
\mathcal{E}_1(a_1), \ldots, \mathcal{E}_m(a_m)
\]

\[
\sum_{i=1}^{m} a_i = x
\]
PUTTING IT ALL TOGETHER, (2)

Procedure: Data Subject selects data gatekeepers & encodes data into the smart contract.

\[\mathcal{E}_1(a_1), \ldots, \mathcal{E}_m(a_m) \]

\[\sum_{i=1}^{m} a_i = x \]

Data subject updates data, or marks them as erased.
UPDATES, (1)

- Smart contract contains a Merkle-Tree:

 current state

 hash

 off-chain memory

 v

 previous state

 update:

 hash

 current state

 hash'

 off-chain memory

 v'
Updating a smart contract, requires a secret-key (to prove ownership)

Either the data subject or the data controller can maintain secret-key (or event: jointly).

In the case of joint key ownership, an update requires interaction between data subject and data controller.
PUTTING IT ALL TOGETHER, (3)
PUTTING IT ALL TOGETHER, (3)

deposits request for processing as a S.C.

data processor

gatekeeper
gatekeeper
gatekeeper
PUTTING IT ALL TOGETHER, (3)

The diagram illustrates gatekeepers and the process of deposits request for processing as a S.C. Data Processor.
PUTTING IT ALL TOGETHER, (3)

parse Distributed Ledger for relevant contracts

Data Processor

deposits request for processing as a S.C.

gatekeeper
gatekeeper
gatekeeper
PUTTING IT ALL TOGETHER, (3)

Data Processor

parse

Distributed Ledger

for relevant contracts

execute MPC protocol to calculate output

deposits request for processing as a S.C.
PUTTING IT ALL TOGETHER, (3)

gatekeeper

gatekeeper

gatekeeper

parse

Distributed Ledger for relevant contracts

execute MPC protocol to calculate output

encrypted output

deposits request for processing as a S.C.

Data Processor
PUTTING IT ALL TOGETHER, (3)

- Deposits request for processing as a S.C.

- Parsing for relevant contracts

- Execute MPC protocol to calculate output

- Encrypted output

- Data Processor
PUTTING IT ALL TOGETHER, (3)

Payments

execute MPC protocol to calculate output

encrypted output

deposits request for processing as a S.C.

Data Processor
CONCLUSIONS

- **Positive** use of DLT for improving GDPR inspired compliance issues.

- Many open questions remain:
 - improve performance of secure multiparty computation protocols.
 - **integration** of MPC / blockchain, DLT.
 - security & game theoretic **analysis**.
BLOCKCHAIN SYSTEMS & PRIVACY

Aggelos Kiayias
University of Edinburgh & IOHK

project PANORAMIX